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THE FLow AROUND .

SPHERE*1

For the determination of the flow
measure the impact pressure, i.e., the

an obstacle. In incompressible fluids

(7Y Ikg m3, is specific weight and v,

velocity one is accustomed to
pressure intensity in front of

the impact pressure is yv2/2g

m/see, is velocity) if the
influence of viscosity can be neglected. Such an influence is appreci-
able, however, when the Reynolds number corresponding to impact tube
radius is under about 100, and must consequently be considered, if the
velocity determination is not to be faulty. The first investigations

2of this influence are included in the work of Miss M. Barker . In the
following pages, experiments will be reported which determine the inten-
sity of impact pressure on cylinders and spheres; furthermore a theory
of the phenomenon will be developed which is in good agreement with the
measurements.

The research apparatus consists of an oil circulation in which the
velocity of the oil can be varied from 0.5 centimeter per second to
30 centimeters per second with the help of a vane-type pump lying
entirely in the oil. A Russian bearing oil and a mixture of this with
fuel oil is used for the measurements. Figure 1 illustrates the test
setup. In this is indicated: P, the pump; a, turning vanes;
G, straightener; and V, the actual test section which possesses a
breadth of 0.148 meter, a depth of 0.15 meter calculated from the oil
surface, and a length of 0.74 meter. It was provided with wall ports A
in three different places. E is an entrance section for the pump;
D, a diffuser; the immersion heater T and the cooling coil K provide

*“Der Einfluss grosser Ztihigkeit bei der Str6mung um den Zylinder
und um die Kugel”, ZAMM, vol. 16, no. 3, June 1936, p. 153-164.

%he suggestion of the present work, which was prepared in the
Kaiser Wilhelm Institute in Gottingen, I obtained from Herr Professor
Dr. Prandtl, to whom in this place I express my most heartfelt thanks
for the energetic furthering of the work and the valuable suggestions
given me for its completion. Another work in the same field is published
in “Forshung ad. Gebiet des Ingenieurwesens”, 1936, vol. 7, no. 1.

%. Barker- Proc. of Royal Society, 1922, Vol. A.-101, p. 435.
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temperature regulation. For impact pressure measurement a cylinder
which was provided with a port was built rigidly into the test section.
The diameters of the cylinders used were 1 centimeter, 1.377 centimeters,

1.953 centimeters, and 2 centimeters. The holes had a diameter of
0.1 centimeter and 0.2 centimeter. Two corrections - one because of
wall effect, the other because of finite size of hole (which originated
with A. Thornand first had to be checked for the measuring range under
consideration here) - were applied to the measurements, which are illus-
trated in figure 7. The solid curve represents the theory.

More precise information on the test setup and the measurement
technique are found in the work cited in footnote 1.

In the case of the measurement of static pressure on a sphere, a
sphere provided with a hole was affixed to a pitot tube, the sphere
having one time a diameter of 0.8 centimeter, the other time 1.6 centi-
meters. The execution of the measurements was in the same manner as in
the case of measurement of the Barker effect. The result is shown in
figure 8. The solid curve corresponds to the theory.

In order to arrive at a clearer picture of the viscous flow around
a cylinder or a sphere, the case of viscous flow against a plate was
next calculated. The differential equation appearing in the two-

dimensional case has already been solved by Hiemenz 3 ~d will be sketched

once more for the sake of a better understanding of the final form. The
solution will than be used in the flow around the cylinder.

After this, the three-dimensional flow against a plate in a fluid
jet will be treated, to be used on the sphere.

VISCOUS FLOW IN THE VICINITY OF A STAGNATION POINT

(TWO-DIMENSIONAL cAsE) .

Potential-flow theory gives for the velocity components in the
neighborhood of a stagnation point, for the case of flow perpendicular
to a plane wall (fig. 2):

U = -ax V=ay

%Iiemenz - Dissertation, Dingl. Polyt. Journal, v.326 (1911),

NO. 21-26.
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The pressure is found from the Bernoulli equation to be

P(U2+ v?) = *(X2 +Y?)PO-P==

With consideration of viscosity, Hiemenz3 ties the formulation:

u = -f(x) v = yf’(x)

P. -
p = %?%)+ ‘2)

(1)

(2)

The continuity equation is fulfilled; the

forx=O (that is, at the wall):

for x = m: V=v, f’=a

boundary conditions read:

I_l=v =(), f=f~=o

In equation (2) if p. signifies the pressure at the stagnation point,

then F(o) =0. From the equations of motion

~,)/(,).- u*+vav ()lap+va2v+a2v—.-. — —_
d-i + ax ay P ay ax2 ay2

one obtains as determining equations for
‘(x) ad F(x):

ft2 - fftt =a2+Vf~9~

with the boundary conditions above.

(3)

(4)

—
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Equation (4) has
the coefficients
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already been integrated by Heimenz. In order to
equal to unity, he sets

f(x) =A~(~) ~=ax

comparison of the coefficients, it follows that

A=Ga a=
[
~
v

With this, equation (h) becomes
\

(5)

The new boundary conditions read

The behavior of ~ and the first two derivatives is shown in figure 4.

We need the pressure difference between the stagnation point and
the pressure for x = - For x = m:

From integration of equation (3), F is detemined to be

(6)

If one now forms
(PO - p) minus (pot - pt), as given by the Bernoulli

equation, one obtains:

( ( p!) = Pa2( )( 2
P. - P) - Po’ - - 2 fmp + y+ml

y ‘(x) + Y2 ,2 )
-)

, ,,,
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For the stagnation streamline, for which y =

5

0:

— .- (P. - P) - (Po’ -
b)

P’)= Q#F(xj~ fm2—

If one puts in for F the previously obtained value, there results

(PO (-P)- Po’- P’) = g(2vfm~ + fm2 -

For x = m, f’ = a; therefore, one obtains as a

(PO - P)- (Po’ - p’) = pva

)f$ ‘= p~m~

final formula:

(6a)

VISCOUS FLOW AT A STAGNATION POINT

(ROTATIONALLY SYMMETRIC CASE)

For the solution of the differential equation arising, all the
expressions, such as the equations of motion, the velocity components,
etc.,were reduced to cylindrical coordinates.

If z, r and ~ are the coordinates (fig. 3), then corresponding
to the two-dimensional case, there wil..,~,ply:

q,,.- r @

‘z = ‘f(z) ‘r= Sf’(z)

P.
(-p= Q#F(z)+r2 )

(7)

(8)

The continuity equation is again fulfilled;
‘P

= O, since we are dealing

with a rotationally symmetric process. These expressions stem from the
frictionless problem of a fluid jet against a plate, where

Vr = ar Vz = -2az

\

and

P;2(4Z2 + r2)
Po-P=—
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The quantity 2az in the frictionless

the viscous case. In the case at hand
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case ‘s ‘eplacedby ‘(z) ‘n
the equations of motion read:

.aJr- dvr avr (b?rr 1 avr ‘r + #vr

)]

..Lh+v_ .—.— —
+ ‘r&+vzX P & &-2

‘r~r r2 3Z2

( )Ja%lzd~z avz:vz:z.-h+v?zz+ A+-+ ‘r ar P az~ az2 r br az2

Substituting equations (7) and (8) in equation (9) gives:

; ft2 - fft’ =2a2+Vf’”

The boundary conditions read

for z = O: f=ff=o

for z = aJ: f’ = 2a

If one finds
from equation

into equation
This yields:

From equating

(9)

(lo)

(11)

f from equation (10), one can therewith determine F

(11). One next substitutes the transformation

f(z) =A~(~) ~=az (12)

(10), in order to make the two coefficients equal to unity.

the coefficients:

1 U2A2
F

= 2a2 = Va3A
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(13)

From equation (10) with equations (12) and equations (13) there results
the final differential equation:

fjttt +f+jptl .jvz+l=o

with the boundary conditions:

(14)

{ The differential equation (14), just as Hiemenzl, is no longer
elementarily integrable. Its solution was obtained, accordingly,
through a power series development from zero:

9=ao+alE+a#2+”””+%F (15)

By the method of undetermined coefficients, ai can be determined:

Since, however, one boundary condition lies at infinity, one coefficient
remains undetermined; and in fact it turns out to be a2“ From the

recursion formulas

P=ao+alE+a2e2+a3E3 +...

$’=a~+2a2~+3a3~2+””-

j3’’=2a2+ 2x3a3!g+3X 4a4E2+. . .

result as coefficients:
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a. =

a2 .

a3 =

~k .

a5 =

a6 =

a7 .

a8 .

a9 .

a10 =

all .

a12 .

a13 .

~u .

a15 .

, a16 =

a17 =

a 18 .

alg =

a20 =

azl =

a22 .

a23 =

a2& .

a23 =

(

(

c

o

0

-1

al=O

for=the present undetermined

-0.166667

0

0

0.555556 x 10-2 a2

-0.396825 X 10-3

0

-0.440917 x 10-3 a22

0.793651 x 10-4 a2

-0.360750 X 10-5

0.374111 X 10-4 a23

-0.114597 X 10-4 a22

3.115735 x 10-5 a2

-0.301482 x 10-5 a24 - 0.385784 x 10-7

).134896 x 10-5 a.23

-0.211005 x 10-6 a22

).224141 x 10-6 a25 + 0.157758 x 10-7 a2

.0.135546 x 10-6 a24 - 0.415153 x 10-9

1.316633 x 10-7 a23

0.152-(98 x 10-7’a26 - 0.295658 x 10-8 a22

1.119505x 10-7 a25 + 0.199390 x 10-9 a2

o.371665 x 10-8 a24 - 0.433457 ~ IO-11

.956242 x 10-9 a27+ 0.554360 x 10-9 a23

0.943031 x lC)-9 a26 - ().462914 x 10-11 a22
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In order now to be able to determine a2, a second series develop-

from infinity was set up, which was adjusted to the boundary condi-
for ~ at infinity. To this end one sets

fl=flo+$~ (16)

in which @l corresponds to a small quantity, which one can neglect-in

the following expressions when it appears squared.

for ~ = m.

@o is the solution

since for 5 = m:

flo’=$’=~ @“ =$1” g’” =$1’”

The boundary condition reads

for 5 = CO: glt = ~

(16a)

Furthermore, go= 5.

The integration constant is omitted, since in the following calculation
it comes in again automatically.

If one substitutes the above values into equation (10), one obtains

(!y” + 2 !#O$l“ + $l@y’) - (go’2 + ~o’!jv + 91’2) + 1 = o (17)

t Or if one neglects the squared terms in ~1:

+;

Q
@l’” + 2Eg1° - @l’ =0 (18)
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To solve this differential equation one sets

—-
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With this, equation (18) gives

A special, not identically vanishing solution of equation (19) is:

If 02 is an additional solution, then

-J

E
2~ d~

#1#21 - 01tQ2 = e m

942’ -@2=e -’52

This equation is directly solvable. Its solution is

The general solution of equation (19) is then:
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~

I
Since for ~ = m, *1’ =0=0, then Cl=O. Therefore

I

The double integral becomes, according to Blasius4,

[1 12C21 ‘ “ 1’‘-”2‘“=“ i ‘2m’‘-’2‘“- ‘JJE‘-’2“ +; ‘e-’2
With this, equation (20) becomes:
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If one substitutes equation (22) in equation (21), one can calculate @
pointwise, since

is tabulated. Therefore

Herewith @, @’, and p’ ‘ are determined for the development at
infinity, as a comparison with equations (16) and equation (16a) shows.

In both developments a2, C2, and C3 appear as unknowns. If

one now combines both solutions at the point E = .5.,and determines

that the value of the function and the first two derivatives of the
series development at zero are equal to the corresponding values that
one obtains from the development at infinity, then three determining



I

equations for a2) C2 and, C3 result, from which the unknowns can be determined. Th&efore: ~
‘P

50
to

was chosen 1.8, since ~“, from which @ is built up, can then be determined accurately

0.002, on account of the alternating signs of the power series development.

The solution of the determining equations gives

a2
= 0.658619, C2 = 2.16492, C3 = -0.557611



14

Thereby a2 is

coefficients of
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determined accurately to at least five places. For the

the power series this yields: .

a2 =

a3 =

a6 =

a7 =

a9 ‘

alo =

all =

a12 =

a13 =

a14 =

al~ =

0.658619 a16 =

-0.166667

0.365900 X 10-2

-0.396825 x 10-3

-0.191261 x 10-3

0.322714 x 10-4

-0.360750 X 10-5

0.106882 x 10-4

-0.497098 X 10-5

0.762253 X 10-6

-0.605859 X 10-6

a17 =

a18 =

a19 =

a20 =

a21 =

a22 =

a23 =

a24 =

a25 =

0.385391 X 10-6

-0.958673 X 10-7

0.381678 x 10-7

-0.259200 X 10-7

0.904603 X 10-8

-0.252966 x 10-8

0.161233 X 10-8

-0.703675 X 10-9

0.209783 X 10-9

-0.970520 x 10-10

a =a
1

=a =a
o 4 5=a8=0

The values for $, g’, and ~’~ are shown more accurately how-
ever, in Table I. In this case, $“ is calculated accurately to two
decimal places, @’ to two, and @ to three. With this the differ-
ential equation (14) is solved.

From integration of equation (11), one obtains

$F=vf’ +$f2= 2av(@’ +92) (23)

-1



As in the plane case, one uses
between the stagnation pressure and
equation (23) is equal to zero; for

$?=I f~ = 2a

15

again the pressure difference
the pressure for z = ~. For ~ = O,

If one now forms again (Po - P)
the Bernoulli equation, one obtains:

(Po (- P) - (PO* -P’) ‘P Vfco’

As a final formula one obtains

(% - P) - (PO* -

=CQ

$4= E-o.557611

finus (PO’ - p’), as given by

+ + fmp
)

- ~ fmp = Pvfmt

p?) = 2pva

STAGNATION PRESSURE ON A CYLINDER

For the stagnation streamline the Navier-Stokes
tion gives

u*+lbp ~a2u + @’u——= —
ax P ax ax2 ay2

(24)

differential equa-

(25)

Figure 12 shows the variation of u on this streamline. The different
behavior of u at the stagnation point from potential flow is explained
by the influence of viscosity. If one integrates between the boundary R
and m, one gets

UR 2 um2

If

R
+~ & ‘&ub—- —

2 2 p(pR-pm)=vdx@+v
w a#’

Figure 13 shows that

11 —
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likewise UR . 0, and we want to identi~ ~ with PO of the pre-

ceding calculation. One obtains, therefore

(26)

J’‘&uti
co ay2

is calculated approximately in that for u the value corresponding to

the potential flow is put in. The contribution of the boundary layer
to the integral is, in the case of not too small Reynolds number, small

in comparison. As potential function @ of the flow around the cylinder,

one obtains

()O=UOX+*

and with it:

(~2u _ -u 2R2+ 8X2R2+ 8y2R2 48X2Y2R2-— — — -

ay2 0 r4 r6 r6 r8 )

For y = 0, therefore, along the stagnation streamline:

32U 6UOR2
—= -—
ay2 Xk

Herewith equation (26) gives

2

(

Puo + 2PVU0
P. - P)=T —

R
(27a)
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or

.—
PO-P

=

/

~+~

Puo
22 -Re

If one substitutes 7 = pg~ then formula (27) reads

PO-P

/

=l+;

7U02 2g

—

17

(27)

(27%)

where g = 9.81 meters per second2.

In order to be able to accomplish a comparison of test results with
theory, the “displacement thickness” (see Tolmien: Hdb. d Experimental-
physik, v. 4, 1st part, p. 262, “Grenzschichttheorie (Boundary Layer
Theory)”) on the cylinder must yet be considered in the calculation.
Solution of the differential equation (5) yields (fig. 5):

where 5* is the displacement thickness. Therefore

0.647 = 8*E

If one compares the flow in the region nearest the
the cylinder and for the flow against a plate, one
tions (27a) and (6a)

2pvuo 2U0
pva = —

R’
a.—

R

(28)

stagnation point for
obtains from equa-

If one substitutes this value in equation
displacement thickness

The dependence of b*/R on Re is shown

(28), one obtains for the

!z~
R

in figure 6.

.—.——— —
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Now since in the test results Re is formed from the cylinder
radius R, the actual effective radius is therefore (R+ 5*), and equa-
tion (27b) is altered to:

PO-P
=1+

4V

7u02/2g
UO(R + 5*)

With this one obtains as a final rule for the stagnation pressure on the
cylinder

PO-P
=1+

4

7u02/2g Re + 0.457@

(29)

In figure 7 the solid curve again gives the theory, which agrees very
well with the practice.

STAGNATION PRESSURE ON A SPHERE

Corresponding to a cylinder, for the stagnation streamline of a
sphere

@nap_

ax P ax

If one integrates again over x

(
PU02

P. - p)=T

a2u

()

.Va%+a?l
v— — —

ax2 ay2 &2

from ~ to R:

since

JRd2u
—dx=o, UR=O

w axa

(30)

The integral on the right side of equation (30) one again solves by
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substituting for u the value for the potential flow. The potential
function of this flow is

For potential flow it is further true that

a2u A+ A ~
—+——=
ax2 ay2 az2

Therefore

If one substitutes in the last formula the value for aulax given by o,
one obtains

Herewith equation (30) becomes

or with y = pg

Puo2+ 3PVU0
Po-P=~ —R

or

“PO- P= 1+6

/puo* 2 ‘G

PO-P 6

yuo*/2g
‘1+=

(Sla)

(31)

(31b)
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If here one also puts the displacement thickness into the calculation,
one gets (since in the rotationally symmetric case E* = 0.5576):

0.5576 = ~*@

Comparison of equation (24) and equation (jla) yields

( 32)

It appears that the displacement thickness I’ora aphcre and a cylinder
.

are equal within ~ percent, although the dioplacemcnt thickness in the

case of plane flow against a plate ia different from the corrccsponding
three-dimensional flow.

If one considers the displacement thlcknesa in equation (31b), one
obtains as a final stagnation pressure formula for a sphere

PO-P
=1+ 6

yuo2/2g Re + 0.455@
(33)

The solid
with test

From
numerical

curve in figure 8 corresponds to the theory; the agreement
results is again satisfactory.

the final stagnation pressure formulu the dependence of the
factor c on Re can be determined, 11’orlcseto

PO-P

/

=l+;
7U022g

For the sphere there reQults

6 Re
E=

Re + 0.455@
(34)
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From Stokest
figure 9 is drawn

calculation one obtains for small Re: e=3. In

log Re as abscissa, e as ordinate. In the region
from about Re = 0.1 to Re = 1 the course of e is essentially dif-
ferent, since Stokess. law describes an approximation for very small
Reynolds number and the above law is an approximation for large Reynolds
number.

For the cylinder one obtains in the same fashion

(35)

According to Lamb5, for small Re, for which the validity of the formula
extends to about Re = 0.5:

Re+4_-Re
(36)

e ‘1.309 - tnl?e

In figure 10 is again shown the
the accuracy of measurement the
tion (29).

dependence of e on log Re. Within
test results here also confimn equa-

With the help of the flow against a plate it is now also possible
to establish approximately the course of u, &@x, and from this p,
on the stagnation streamline. A single curve was assumed in which,
inside the displacement thickness 5*, the magnitudes as given by the
flow against a plate were used. From the displacement thickness on,
which had a value of 0.0455 in the foregoing case for Re = 100, the
potential flow was calculated. To explain the transition from viscous
to potential flow, I would like to go through the calculation of u as
an example. The solution of the viscous problem ‘l/”o has as asymptote

the tangent to the curve u2/uo, which was determined from potential

theory, at the point 5* = 0.0455 centimeter. In figure 11 this tangent
is labelled t. The difference k between the asymptote t and ul

at the point X. gives the deviation of viscous flow from potential

flow at this point. Therefore to the value ‘1
at the point X. was

added the proper k. With the help of this procedure one obtains point-
wise the transition from u~ to U2.

%amb - “Hydrodynamics” (Znd Edition 1931; German Edition by
E. Helly, p. 696, par. 343).
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&@x was determined correspondingly; the pressure p was found
the equations of motion to be, in the case of the sphere:

-P ~ UX2 ~ a%

%-

6= -— -— — +
7U02 2g 400 200 ax UO(R+ X)4

( 37)

Instead of 6 in the last term of the preceding equation (37), in
the case of the cylinder one gets the factor 4. Figures 12, 13, and 14
are the results; by way of comparison ‘the corresponding curves for the
cylinder and the sphere are shown on one sheet. The curves are true,

as already said, for Re = 100, in which R = 0.01 meter; U. = 1 meter;

v = 0.0001 kilogram x second per meter
2 was assumed.

Naturally the last curves give only an approximation, which can be
made essentially better through a second approximation; yet this task
in the framework of the foregoing work would lead too far.

In the
and spheres

SUMMARY

foregoing work the stagnation pressure increase on cylinders
brought about through the influence of large viscosity, was

reported on.

For the three-dimensional problem, hence the flow around a sphere,
a differential equation was set up which corresponded to that of Heimenz,
who had already solved the two-dimensional case. The solution was
ascertained likewise through an approximate methcxi. The solutions for
the two- and for the three-dimensional case were used for the flow
around the cylinder and sphere respectively; the formulas so obtained
for the stagnation pressure increase stood in good agreement with the
reported test results. Finally, a procedure to determine the velocity
and pressure variation, as well as the variation of du/~x on the
stagnation streamline was shown and used on the practical case of
Re = 100.

Translated by D. C. Ipsen
University of California
Berkeley, California
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TABLE I

E # @’ P E @ $’ $“
o 0 0 1.3172 1.4 0.8546 0.9476 0.1697
.1 .0064 .1267 1.2172 1.5 .9502 .*35 .1301
.2 .0250 .2434 1.1173 1.6 1.0472 .9762 .0895

.0S48 .3502 1.0181 1.7 1.1453 .9863 .0622
:: .0974 .4471 .9200 1.8 1.2424 .9905 .0418
.5 .1439 .5343 .8235 1.9 1.3436 .9935 .0276
.6 .2012 .6129 .7298 2.0 1.4430 .9962 .0180

.7 .2659 .6804 .6400 2.1 1.5413
● 9979 .0115

.8 .3370 .7400 .5548 2.2 1.6409 .9986 .0073

.9 .4137 .7847 .4742 2.3 1.7416 .9991 .0042
1.0 .4951 .8352 .4015 2.4 1.8417 .9995 .0027
1.1 .5805 .8712 .3351 2.5 1.9420

● 9997 .0016
1.2 .6653 .9025 .2760 2.6 2.0423 .9999 .0009
1.3 .7608 .9247 .2241
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Figure l.- Test tunnel.

Figure 2.- Streamline picture for flow against a plate (two-dimensional).

Figure 3.
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+1t
., -0 .—

0
0

0.3

a a-

[“5 ‘o 2=

Figure 4.- ~, @’, @“. The curves drawn out illustratethe two-dimensional
solution,those not drawn out the three-dimensional.

Lz’(
0.647

Figure 5.

Re

Figure &- @ 0.45: ~~ on aMomentum thickness on a cyljnder ~ =

T Re
6*

sphere - = 0.455
R

r Re”

~mm-m -------- — -.
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PO-P

*

“+=1+ 4Re + 0.457 m

2g
4

1’

3

2

I*
o 20 40 60 60 100 120 140

NACA TM 1334
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Figure 12.- Velocityvariationon stagnationstreawe; cylinder: Curve I;
sphere: Curve II. Re = 100.



NACA ‘IM1334

/,, 47FWFFR

Figure 13.- Variationof !& on stagnationstreamline; cylinder: Curve I;

sphere: Curve II. Re = 100.
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Figure 14.- Pressure variationon stagnationstreamline; cylinder: Curve I;

sphere: Curve ~. Re = 100.
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